$df=\frac{\partial f}{\partial x} dx+\frac{\partial f}{\partial y} dy+\frac{\partial f}{\partial z} dz$
Schutz直接定义由成份$\partial f/\partial x,\partial f/\partial y, \partial f/\partial z$构成的量为梯度,这是1形式。
但是,一般情况下,梯度定义为
$\nabla f=g^{ik} \frac{\partial f}{\partial x^k} \frac{\partial}{ \partial x^i}$
其成分为$g^{ik}\frac{\partial f}{\partial x^k}$,这是向量.
参考文献
1. B. Schutz: A first course in general relativity, Cambridge Univ, 2009
2. http://en.wikipedia.org/wiki/Gradient